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We numerically compute the various history-dependent magnetizations for Heisenberg spin-
glasses with and without anisotropy. The exchange interactions are of short range and have a
Gaussian probability distribution. Our approach closely follows that of paper I. In the absence of
anisotropy, a Heisenberg spin-glass is found to have no irreversibility. The field-cooled and zero-
field-cooled magnetizations are macroscopically equivalent and magnetic hysteresis is absent. This
macroscopic reversibility is a consequence of the accessibility of the rotationally degenerate field-
cooled state and does not correspond to microscopic reversibility. Both Dzyaloshinsky-Moriya (DM)
and uniaxial anisotropy introduce macroscopic irreversibility. In the latter case the hysteresis loops
are like those which we found for Ising spins. In the former case, in some situations, we find dis-
placed loops, which look similar to those seen in Mn-containing spin-glasses. To get qualitative
agreement with experiment, we must also impose a tendency towards ferromagnetism. This fer-
romagnetic tendency (which corresponds to a displaced Gaussian exchange distribution with J,> 0)
is essential in order to maintain rigid rotation of the spins in response to field rotations. This rigidity
is a fundamental assumption in other approaches which explain analytically why DM anisotropy
leads to displaced hysteresis loops. Finally we study the coexistent (longitudinal) ferromagnetic—
(transverse) spin-glass phase proposed by Gabay and Toulouse. The behavior of the coexistent spin-
glass is very similar to that of typical spin-glasses in very large applied fields. We see no indication
for reentrant behavior, as is often observed experimentally, in our temperature-dependent moderate-
field magnetizations. Furthermore, a calculation of the zero-field (J, T) phase diagram for isotropic
systems shows no evidence for reentrant behavior. We cannot rule out the possibility that a reen-
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trant transition exists only in some narrow range of low magnetic fields.

I. INTRODUCTION

In this paper the various history-dependent magnetiza-
tions for Heisenberg spin-glasses are computed. We dis-
cuss the role that microsconic anisotropy plays in irrever-
sible phenomena and investigate the recently proposed-2
coexistent spin-glass—ferromagnetic phase. The approach
used here is identical to that of the preceding paper’
(called I). Some of this work was summarized in an ear-
lier Letter.*

As discussed in I, it is assumed that on an “intermedi-
ate” time scale, a spin-glass will follow a given minimum
of the free energy as the surface evolves with field H or
temperature 7. Magnetic hysteresis and temperature-
dependent irreversibility arise because of the disappear-
ance of the minimum upon changing H or T this, in turn,
causes the system to “hop” to a new nearby metastable
state and leads to irreversibility. “Intermediate” times
correspond to those which are sufficiently long to allow
the spin-glass to find the nearest minimum, after H or T
has changed, but sufficiently short so that no tunneling or
thermal activation processes will take the system to anoth-
er metastable state.

In our calculations we are forced, by default, to look at
the simplest mean-field model for the free-energy func-
tional F[{m;}]. Here m; is the thermal average of the
spin at the ith site. The corrections to mean-field theory,
deriving from the “reaction terms,” lead to unphysical re-
sults.’ These problems probably arise from errors in

28

standard calculations of the reaction term, which errors
are, in turn, due to finite-size effects. Since, in the Ising
model, mean-field theory has led to useful insights into
the nature of the free-energy surface, it is important to ap-
ply it also to the Heisenberg case. It should be noted that
(T =0) ground states derived in mean-field theory also
satisfy the condition for metastability used in Monte Carlo
simulations.® At zero temperature the neglect of the reac-
tion terms is justified and all of our T =0 results should
be qualitatively, if not quantitatively, the same as in
Monte Carlo simulations. What differs in the two ap-
proaches is the algorithm which determines how the sys-
tem “flows” over the T =0 free-energy surface.

In comparison with Ising systems, because of the ex-
pense, there is virtually no simulation work on history-
dependent properties of Heisenberg spin-glasses. Walstedt
and Walker® have pointed out that anisotropy plays a key
role in the Heisenberg case. Without anisotropy they see
no evidence for a cusp in the zero-field “equilibrium”
magnetic susceptibility, which is a signature of the spin-
glass phase. Two types of anisotropy have been studied,
using primarily analytical methods. Fert and Levy have
focused attention”® on Dzyaloshinsky-Moriya’ (DM) an-
isotropy; they and others!®='? have constructed a macro-
scopic free energy based on this microscopic anisotropy.
The assumption of rigid rotation of the spins is fundamen-
tal in their work. Our approach allows us to examine this
assumption in some detail. Roberts and Bray'? and Cragg
and Sherrington'* have studied uniaxial anisotropy using
replica-symmetry-breaking techniques'’ applied to the
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infinite-range interaction model. This theoretical ap-
proach cannot lead to a direct calculation of the various
history-dependent magnetizations. However, it does claim
to specify under what circumstances irreversible behavior
will occur. Uniaxial anisotropy has been experimentally'®
studied in a class of spin-glasses having hexagonal crystal
structure. The work of Cragg and Sherrington makes con-
tact with these interesting systems.

Although mean-field theory represents a clear oversim-
plification, our numerical approach yields new and previ-
ously unavailable information about the effects of micro-
scopic anisotropy mechanisms on macroscopic measure-
ments. We are able to calculate the field-cooled (FC) and
zero-field-cooled (ZFC) magnetizations as functions of
temperature and field, and determine how they are affect-
ed by DM and uniaxial anisotropy. Hysteresis loops are
obtained in the presence of both types of anisotropy. The
so-called “displaced” loops'”!® are found only when the
anisotropy is of the DM type. This result supports a pre-
vious claim made by Fert and Levy.” As in the Ising case
(of paper I), we see sharp magnetization reversals in hys-
teresis loops, only when there is a net tendency towards
ferromagnetism. In this previous paper we found that the
experimentally observed behavior of the magnetic hys-
teresis in the strongly anisotropic AuFe alloys (for a range
of Fe concentrations) was similar to that obtained in our
calculations based on the Ising model. In this paper we
show how many features observed in CuMn hysteresis ex-
periments can be explained using a Heisenberg Hamiltoni-
an with weak DM anisotropy.

A very striking result of our calculations (which was
first reported elsewhere®) is that in an isotropic Heisenberg
spin-glass there is no macroscopic irreversibility. The FC
and ZFC states are found to be the same and magnetic
hysteresis is absent. This lack of measurable irreversibility
holds despite the fact that changing H or T affects the
free-energy surface for Heisenberg spins in the same way
as was found for the Ising case: (i) Minima generally
disappear upon heating, but never upon cooling and (ii) at
sufficiently low temperatures changing the field by small
amounts leads to the disappearance of a given minimum.
Thus in the Heisenberg case, as in the Ising model, there is
“minima hopping.” The unique aspect of the isotropic
Heisenberg spin-glass is that the system evidently hops be-
tween minima all of which correspond to (rotationally de-
generate) field-cooled states. That is, because of the rota-
tional degeneracy of the FC (and all other states) in the
plane perpendicular to the field, the FC state in particular
is extremely accessible. In the isotropic Heisenberg model
there is microscopic but not macroscopic irreversibility.
Upon completion of a hysteresis “loop” we find that the
two values of the m; for each H (corresponding to the two
“legs” of the loop), are different, but that the total mag-
netization at a given H is independent of the history.

An important consequence of this result is that, on
these intermediate time scales, there is no magnetic
remanence. Because the present theory and the Monte
Carlo approach are equivalent at T =0, it should be noted
that our observations of vanishing remanence and magnet-
ic hysteresis can be corroborated in Monte Carlo simula-
tions. There is some preliminary simulation evidence'® to
support our results. A Heisenberg spin-glass with no an-
isotropy can essentially “follow” a changing magnetic
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field. As discussed in I, the inertial behavior that we asso-
ciate with magnetic remanence occurs when the spin-glass
gets trapped in a metastable state (of nonzero magnetiza-
tion). Evidently this trapping can only happen when an-
isotropy is present. Once anisotropy is introduced, the FC
and ZFC states become macroscopically distinct; the
behavior of the temperature-dependent magnetizations is
qualitatively the same as found in the Ising case, and
closely resembles experimental results. Because of the
similarity of the Ising and anisotropic Heisenberg models,
we do not present new calculations for all the different
spin-glass properties stuided in I, such as magnetic
remanence or the field-dependent specific heat.

In this paper we also briefly discuss the xy model,
which is a special case of the uniaxially anisotropic
Heisenberg system. As might be expected, for fields ap-
plied in the x-y plane, the FC and ZFC magnetizations are
inequivalent. However, the splitting between these two is
somewhere between that of the isotropic Heisenberg and
Ising models.

An outline of the paper is as follows: In Sec. II we
present the model Hamiltonian and outline the theoretical
framework for dealing with uniaxial and Dzyaloshinsky-
Moriya (DM) anisotropy. The latter is readily handled
within mean-field theory, whereas the former (for S =1)
requires some matrix and numerical analysis. Section III
contains a discussion of several phase diagrams (for the
various anisotropy constants as functions of temperature).
We also present results for the transverse and longitudinal
order parameters as well as the respective transition tem-
peratures. The field dependence of the transversely or-
dered state is treated in some detail. Section IV describes
results for the temperature dependence of the FC and ZFC
magnetizations when various types of anisotropy are
present. The behavior of the x-y spin-glass model is also
summarized. In Sec. V we discuss the results of a number
of magnetic hysteresis calculations. Of particular interest
is the presence of displaced loops observed, under the
proper circumstances, when DM anisotropy is present.
The response of isotropic and anisotropic spin-glasses to
field rotations is considered in Sec. VI. In general, rigid
rotations are not observed unless the field values are ex-
tremely large or a ferromagnetic tendency is present. Sec-
tion VII deals with the Gabay-Toulouse' coexistent spin-
glass ferromagnet. The temperature-dependent, moderate-
field magnetizations and zero-field phase diagram are not
found to be suggestive of reentrant (or disappearing) fer-
romagnetism, despite the fact that experimentally this
phenomenon is claimed to exist. Finally, in Sec. VIII we
list our conclusions. While our results are generally
presented for one distribution of the exchange interaction,
we have ascertained that all our numerical plots are fairly
typical.

Unlike the preceding paper, we do not present many ex-
perimental results for comparison purposes. This is pri-
marily because once anisotropy is introduced, the vector
spin-glass properties are generally similar to those we saw
in Ising systems. Thus qualitative comparison between
our theory and experiment can be made by reference to pa-
per I. The main exception is our discussion of displaced
hysteresis loops in which we present several experimental
results. It should be stressed that, as in I, it is not ap-
propriate to make quantitative comparison with the data.
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We deal with an oversimplified model Hamiltonian, treat-
ed within the mean-field approximation and solved for
finite-size systems.

II. DESCRIPTION OF THE METHOD

We consider the Heisenberg Hamiltonian with nearest-
neighbor interactions

K= 2J,~j§,"§j - ED(S,Z)Z— 2 ﬁ’,’j'(gi ng)
L] i L]
- 3SH. 2.1)
1
The first term represents the random exchange interac-
tions between spins i and j, which are distributed accord-
ing to a Gaussian probability distribution P (Jj;) of width J
and center J,. The second and third terms correspond to
uniaxial and Dyzaloshinsky-Moriya anisotropy, respec-
tively. Here H is the external magnetic field and the mag-
netic moment gug=1; all energies (Jo, D, H, etc.) are
measured in units of J.

It is also assumed that the coefficients D;* = —D;* are
distributed randomly. Here, and throughout, 1 and v are
taken to be Cartesian coordinates. For convenience, we
chose a two—3&-function distribution for the D/#:
P[D;#]=8(D}*+D"). The anisotropy constants D and D’
were chosen as variable parameters, in our numerical stud-
ies. (Thus D was allowed both positive and negative
signs.) The limit D— — o corresponds to an x-y model,
which will be discussed in Sec. IV. Within the context of
mean-field theory, the first and third terms in Eq. (2.1)
can be combined, so that their total molecular field ﬁ,- is

>
given in terms of a tensor J;;

HF=B J'm}+BHS,;, B~ =kyT . 2.2)
jv
for H applied in the £ direction. Here
J; Dy —Dp
Jy=|-DiF J; DY (2.3)

D}Y —Di* Uy
In the absence of uniaxial anisotropy, the condition that
m; be an extremum of the (mean-field) free energy is

=

i, B | H; |)

= (2.4)
[H; |
where B, is the usual Brillouin function for spin S.

We considered uniaxial anisotropy only for the case
S =1, since for general S, a fair amount of matrix algebra
and numerical analysis is required. Thus in all calcula-
tions throughout this paper we treat only S =1. It should
be noted that in previous work,'>'* which studied uniaxial
effects, it was assumed that the Heisenberg spins were
classical. In this way matrix analysis was avoided. For
definiteness we outline our procedure for the case when
the only anisotropy present is uniaxial. When S =1, the
mean-field Hamiltonian for the ith site can be written as a
3 X3 matrix, using the generalized (S =1) Pauli matrices.
It can be readily shown that the self-corlnsistent equation

for @y, in terms of H; in Eq. (2.2) (with ]_5,-1. =0), is
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(2.5a)

for p=x and y and for u=z the term —2DH}' —2E,H} in
Eq. (2.5a) is replaced by —2E; Hf. Here E; is obtained by
solving for the three cubic roots of

Ei(—D*+ H})—2DE}—E}+D[H}—(H??]=0,
(2.5b)

where H,-ZEE“(H,“)Z. Equations (2.5) reduce to Eq. (2.4)
in the limit D =0, as expected.

It should be apparent from Eq. (2.4) that at T =0 (when
uniaxial anisotropy is absent) f; is parallel to H;. This
criterion for metastability coincides with that used in
ground-state Monte Carlo simulations.® A convincing ar-
gument for its validity is given in Ref. 20. In the case of
an xy model with infinite-range interactions our (ground-
state) effective-field distribution is the same as that ob-
tained by Palmer and Pond?! using Monte Carlo simula-
tions. It is important to note that when uniaxial anisotro-
py is present, it is not possible to define a total molecular
field H; along which @, points. The way in which uniaxi-
al anisotropy helps to orient the spins is fairly subtle, as
can be seen from Eqgs. (2.5).

As in I, we solved Egs. (2.4) and (2.5) numerically using
an iterative technique. Convergence is assumed when

2[(fn’i)n—(I_ﬁi)n—l]2

2[(ﬁi)n]2

<10¢.

Here n represents the nth iteration. Ling et al.’ have
shown that all solutions for the m; which are obtained by
iterative convergence are minima of the free energy. This
result has been rigorously proven for the Heisenberg case
when no updating procedure (see I) is used. It also holds
when anisotropy is present. As discussed in I, it is not
likely that updating Eq. (2.4) (which is necessary in order
to expedite convergence) will lead to problems.

Because of the relative complexity of treating vector
spins, we were forced to consider somewhat smaller sys-
tems than in the Ising model. N ~10° for the DM and
isotropic Heisenberg cases. The presence of uniaxial an-
isotropy requires the numerical solution of a cubic equa-
tion [Eq. (2.5b)] at each iteration. Therefore, in this case
we considered N =6> spins. Our procedures for generat-
ing field-cooled states, zero-field-cooled states, and hys-
teresis loops were the same as those used in paper 1. Con-
vergence, however, typically required many more itera-
tions than in the Ising case. We have verified that our re-
sults are unaffected when a more stringent convergence
criterion is used in Eq. (2.6).

On occasion, field-cooling processes led to numerical
difficulties, particularly, in large fields. At high T, the m;
were aligned parallel to the field direction (say 2), and as
the system was cooled, there was often a delay before the
X,y components were able to become nonzero. That is, the
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spin-glass tended to supercool into a longitudinally or-
dered state, so that mf=m}!=0. This was generally
avoided by applying a very small perpendicular field in the
£+4§+2 or £+5 direction of magnitude 10~*J. We veri-
fied that our results were quantitatively insensitive to the
value of this field, but it was essential that it be present,
particularly in the case of uniaxial anisotropy. In all cases
the states we found in this way had lower free energy than
the supercooled state.

III. THE PHASE DIAGRAM AND
TEMPERATURE-DEPENDENT ORDER
PARAMETER

As in I, we take the spin-glass order parameter to be of
the Edwards-Anderson type. However, since m; is a vec-
tor, the order parameter [which involves (m{)?] may have
up to three components. When FI;EO or D=£0, the spin-
glass is no longer isotropic so that there are two distinct
terms called Q) and Q,, where the subscripts refer to the
direction defined by H or the anisotropy axis (called z).
(When H and D are both present and noncollinear, a
three-component order parameter is needed.) Unless indi-

cated otherwise, we will not treat this case in this paper.
We define

(@)

Q
T
15
© ! /'

10 . .
D’} /
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Q15§2[(mf)2+(m,?’)2] , (3.1a)
Q”E—J% pALHE (3.1b)

There are thus, in principle, two transition temperatures
T, corresponding to the onset of longitudinal (7)) and
transverse order (T,;). Throughout this paper each T, is
found by extrapolating our finite-N results to the thermo-
dynamic limit. For D >0 and/or H=40 the higher transi-
tion corresponds to the ordering of Q. For D <0, Q, or-
ders first. For D— «, the spin-glass is Ising type,
whereas for D — — o, it is an x-y system.

There have been several calculations'®!* of the phase di-
agram in the D-T plane for a classical Heisenberg spin-
glass with infinite-range interactions (and with I_5§j=O).
Our phase diagrams look qualitatively similar to those
previously obtained, except that the maximum value of D,
which corresponds to the onset of only longitudinal order-
ing at all temperatures, is different. We find D™*=1.7
and D™"= —0.20, as compared with + 0.32 and —0.20
for the infinite-range classical spin model.

In Fig. 1(a) is plotted the temperature dependence of the
two order parameters for different values of the uniaxial
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FIG. 1. (a) Temperature dependence of spin-glass order parameters (Q and Q,) for different values of uniaxial anisotropy with
N =6. All energies are units of J, and S=1 in all calculations. (b) Temperature dependence of order parameter Q;;=Q, for
Dzyaloshinsky-Moriya anisotropy. (c) Phase diagram for spin-glass with pure DM anisotropy. (d) Field dependence of transverse or-
dering temperature for isotropic (@) and DM anisotropic Heisenberg system (O). T‘1 is normalized to its value when H =0. In

(a)—(c), H =0.
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anisotropy D >0 and H=0. No DM anisotropy is
present. Here N =6° or 10°. This figure shows clearly
that Q) orders first and that for sufficiently large D, the
transverse ordering will be totally suppressed. The pres-
ence of a magnetic field or finite Jo>0 raises Q) and
suppresses Q. The various values of T and T, can be
read off the figure. T, increases with D, whereas T, is
lowered. For D =0, T, ~3.1J.

For the case of pure DM anisotropy there is clearly no
anisotropy in Q, unless a magnetic field is present. In Fig.
1(b) is plotted Q| =Q, versus temperature for this case.
We took N =10° and considered three values of the aniso-
tropy constant D’. As may be seen, the larger D’, the
higher is the T,. The anisotropy acts to strengthen the
random interactions in the system. Some of the values of
the anisotropy constants in Figs. 1(a) and 1(b) were chosen
to be larger than is probably physical for purposes of illus-
tration. We found that occasionally inconsistent results
were obtained when D’>0.5. Extremely high values of
DM anisotropy correspond to a highly “frustrated” sys-
tem, particularly since this anisotropy has a peculiar vec-
tor nature. By constrast, we had no difficulties increasing
the uniaxial anisotropy D to arbitrarily large negative or
positive values.

The results in Fig. 1(b) can be used to construct a phase
diagram for the DM case. In Fig. 1(c) is plotted this D'-T
diagram. This should be contrasted with that obtained'>'*
for the uniaxial case. Here there are no intermediate
phases corresponding to purely longitudinal or purely
transverse ordering. We found that for small values of the
DM anisotropy 7, increases slightly slower than linearly.
Because of the oversimplifications of the model used here,
it is not clear whether this result can be related to any ex-
perimental situation. Presumably in a laboratory spin-
glass it is not possible to vary D’ without affecting other
parameters as well.

Finally, in Fig. 1(d) is plotted the field dependence of
T,, for the isotropic Heisenberg case and for the case of
pure DM anisotropy. As has been found in analytical cal-
culations? based on the infinite-range model,
T, ~T.(1—aH? for small H. The coefficient of the qua-
dratic term we find is 0.18 if H is measured at units of T;
this agrees with analytical work"? in which @ =0.23. By
H =4.0 there is no longitudinal spin-glass order. By con-
trast, when pure DM anisotropy is present, we see virtual-
ly no reduction of the perpendicular ordering temperature
up to extremely large fields. Evidently because of the vec-
tor cross-product nature of the anisotropy, the system has
difficulty suppressing entirely the ordering in the 1 direc-
tion. It should be stressed, however, that the magnitude of
Q. will be very much reduced relative to Q) in large
fields.

IV. RESULTS FOR THE TEMPERATURE-
DEPENDENT MAGNETIZATION

In this section we present results for the FC and ZFC
magnetizations as functions of temperature. We consider
a range of values for the parameters Jy, D, and D’ corre-
sponding, respectively, to the center of the Gaussian distri-
bution of the {J;;}, the uniaxial, and DM anisotropy con-
stants.
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FIG. 2. (a) Temperature dependence of field-cooled (FC) and
zero-field-cooled (ZFC) magnetizations in isotropic Heisenberg
systems in various applied fields, for N =10°. M, is measured
relative to its maximum value My=S. (b) Effect of anisotropy
on FC and ZFC temperature-dependent magnetization M. The
value of the DM (M) anisotropy constant D’ =0.25.

In Fig. 2(a) are plotted FC and ZFC magnetizations
versus temperature for an isotropic Heisenberg spin-glass
with Jy=0. The values of H, are as indicated. The mag-
netic fields we consider are taken to be fairly large because
the finite size of the system (N =103 leads to a small but
nonvanishing magnetization even at H =0. We therefore
had to consider applied fields which are large enough to
make this effect negligible. The smallest values of H, we
can treat correspond to H, ~0.1 in units of J which is of
the order of 1 kG. However, as discussed in I, reasonable
agreement between theory and experiment can only be ob-
tained when the theoretical fields are rescaled by about a
factor of 10. While this is consistently found in the Ising
case,”? we speculate that it is also true for vector spins.
Thus a more appropriate correspondence is 0.1J ~ 100 G.

All our results are consistent with the observation that
the FC and ZFC magnetizations are identical at all H.
Magnetic hysteresis calculations, presented in Sec. V, help
to reinforce this conclusion. We have verified that the FC
and ZFC states are microscopically distinct; however, the
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m; are always related by an arbitrary rotation about the z
axis. The FC state is found to be microscopically reversi-
ble upon subsequent warming, so that, as in the Ising case,
there is no minima hopping in the field-cooled process. In
the isotropic case, the same result applies to the ZFC state,
although we end up in a different rotation of this state, de-
pending upon how we apply the magnetic field after cool-
ing in zero field. This reflects the fact that any applica-
tion of H below T, leads to minima hopping. Since there
are an infinite number of rotated FC states, when we cool
slowly, we always find a different microscopic ground
state. These correspond to different initial guesses of the
m; at the highest T we use to start our cooling procedure.
It should be noted that extremely rapid cooling (quench-
ing) can lead to states other than those belonging to the
FC manifold.

The absence of macroscopic irreversibility that we see in
the temperature-dependent magnetizations (and in the
field-dependent measurements discussed in Sec. V) should
be compared with inferences made on the basis of replica-
symmetry-breaking models. This approach was first ap-
plied to the isotropic infinite-range Heisenberg model by
Gabay and Toulouse.! Their work was subsequently
corrected by Cragg, Sherrington, and Gabay.? These au-
thors argued that replica symmetry breaking, which is
claimed to be the theoretical indicator of magnetic irrever-
sibility, coincides with the onset of transverse spin-glass
order. By random searches at T =0, or rapid-quenching
procedures, we have found states which do not belong to
the manifold of rotated FC states. They are, in agreement
with Bray and Moore’s!® conclusions, surprisingly similar
to the FC state. Presumably, their temperature onset
roughly coincides with that of Q,(T,H). However, the ac-
cessibility of the (lower-energy) FC states seems to mask
the presence of these other minima, so that they do not
lead to irreversible phenomena. In view of these observa-
tions it may be that replica symmetry breaking (or the on-
set of many metastable states) is not as intimately connect-
ed with irreversible processes as has been claimed.!?

There are two other explanations of the possible
discrepancy between our results and those of Refs. 1 and
2. It may be that the range of the interaction plays an im-
portant role in determining the characteristics of irreversi-
ble processes. We have carried out mean-field studies of
small (N <400) “infinite”-range interaction spin-glasses.?®
These do appear to have some macroscopic irreversibility.
This result may derive from the fact that the barriers be-
tween minima become larger as the range of the interac-
tion increases. Thus the FC states are not as accessible as
in the finite-range case. Alternatively, it may be that even
in the finite-range case when N ~ 1000, our systems are
not sufficiently large to be representative of the thermo-
dynamic limit. It should be noted, however, that Bray and
Moore!® have found that by N ~1000 there are several
hundred inequivalent ground states for the infinite-range
model and even more for the case of finite-range interac-
tions. Finally, we do not believe the use of mean-field
theory is a significant factor here, since the absence of
magnetic hysteresis (discussed in Sec. V) is observed at
T =0, in which limit the reaction correction to mean-field
theory is negligible.

Despite these possible reservations, it seems clear that
irreversibility must be considerably weaker, the more iso-
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tropic the spin-glass. Since there are no truly isotropic
spin-glasses in nature, the only test of our results is to
search for systematic trends in classes of compounds
which show varying degrees of anisotropy.'®

Once anisotropy is introduced we find results for MFC
and MZFC which are qualitatively similar to those found
in the Ising model (paper I). As shown in Fig. 2(b), the
FC and ZFC magnetizations are split at roughly the tem-
perature at which MZFC has a maximum. The results
shown in the figure are for fairly large H =0.5. At this
large value of H the ZFC maximum is more evident the
larger the anisotropy. The top three sets of figures corre-
spond to the uniaxially anisotropic case, the bottom one is
for the case of DM anisotropy with D' ~0.25. This is also
semiquantitatively similar to the uniaxial case for
D ~0.25 It should be seen that the effect of Jy0 is to
raise the magnitude of the magnetization (note the breaks
in the vertical scale) and to slightly flatten out the ZFC
curve. Jg acts to enhance the magnetic field, as expected.
Comparing Figs. 1(a) and 2(b) with Jy=0, D =0.8, it may
be seen that Q, becomes nonzero at around T ~2.0. How-
ever, the splitting of the FC and ZFC curves occurs at
around T ~3.0. Thus the onset of irreversibility is not as-
sociated with the onset of Q,. This is not unexpected,
since an Ising spin-glass, which has @, =0, has irreversi-
bility. Obviously this does not contradict the results of
Refs. 1 and 2 which deal only with an isotropic spin-glass.

An interesting case of a uniaxially anisotropic system is
the limit D— — w0, in which the spins are confined to the
x-y plane. The results for the FC and ZFC magnetiza-
tions are shown in Fig. 3 for N =10° as a function of tem-
perature. Here the field is applied in the x direction. We
see by comparison with the Ising and isotropic Heisenberg
models, at this value of |I_-i|, that the behavior of the
ZFC and FC curves is somewhere between that of these
two other cases. The applied magnetic field breaks the ro-
tational symmetry in the x-y plane; hence the x-y spin-
glass is not expected to have full reversibility, as in the iso-
tropic Heisenberg model. However, because of the extra
rotational degrees of freedom of the individual spins, it is
reasonable that the irreversibility in the x-y case is not as
extreme as for Ising spin-glasses.

V. RESULTS FOR THE MAGNETIC HYSTERESIS
CURVES

In the Ising case of paper I we saw that magnetic hys-
teresis occurs because small changes in H destroy minima
on the spin-glass free-energy surface; the system must hop
to a nearby state (as in a first-order transition). The same
processes occur in an isotropic Heisenberg spin-glass.
However, these lead to microscopic, but not macroscopic,
irreversibility.

In Fig. 4 are plotted the calculated hysteresis curves for
an isotropic Heisenberg system of 10% spins. Recall that
an “infinitesimal” field is also applied in the X +§ direc-
tion, as described above. Each curve corresponds to a dif-
ferent value of J,. For all values of J, including the fer-
romagnetic case (Jo=1.0), the M, vs H, curve passes
through the origin. There is no macroscopic hysteresis.
The temperature T is taken to be 1.0; however, we have
verified that the results are qualitatively the same at lower
temperatures. Thus the observed absence of hysteresis
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in various fields H||%.

loops is not affected in any qualitative way by the neglect
of the reaction terms (which assumption is valid at T =0).
When we sweep from negative to positive H we find that
at each value of the field the m; are different than was
found on the sweep from positive to negative H; however,

the states are simply related by a rotation in the x-y plane
so that the macroscopic magnetization is unaffected by
the history. Furthermore, in a hysteresis calculation each
M,(H) is found to be identical to that obtained by field
cooling. This reinforces the observation made in Sec. IV,
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FIG. 4. Magnetization vs field for various J, in isotropic Heisenberg system with N =10°. Note J,= 1.0 is ferromagnetic.



28 IRREVERSIBILITY AND METASTABILITY IN SPIN-... . IL ...

FIG. 5. (a) Magnetic hysteresis curves for case of uniaxial an-
isotropy with D =0.4 and various J,. Here N =6. (b) Magnet-
ic hysteresis curves for case of DM anisotropy for D'=0.5 for
various Jy and N =10, Inset shows the effect of a type of com-
bined uniaxial DM anisotropy with J also present (see text).

that because of the rotational degeneracy of the FC state,
it is extremely accessible; as a consequence, the spin-glass
exhibits no macroscopic irreversibility.

To get additional insight into the behavior of magnetic
hysteresis, we have performed hysteresis calculations for
nondisordered Ising and Heisenberg ferromagnets in
mean-field theory. In the Ising case the loop is rectangu-
lar, much like that shown in Fig. 5(a) for Jo=1.0. This
loop corresponds to the fact that there are at most two
minima on the free-energy surface. In this case the system
stays in the 1 minimum, until it becomes unstable with de-
creasing H. It then jumps discontinuously to the | state.
There is a small range of H over which two minima coex-
ist, so that magnetic hysteresis represents a supercooling,
nonequilibrium phenomenon. In the nondisordered isotro-
pic Heisenberg ferromagnet, the magnetization always
points along the external field direction (which is the only
direction of broken symmetry). As H, is turned off, there
can be no component of M along the z direction so that
M, vanishes when H,=0.2* The hysteresis behavior ob-
served for spin-glasses seems to be a direct reflection of
these results for nondisordered ferromagnets: The Ising
system exhibits macroscopic hysteresis, whereas the
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Heisenberg case does not. Physically, this corresponds to
the fact that vector spins have additional flexibility and
can “follow” the motion of the external field. They do not
get readily trapped into metastable states, as in the Ising
case. Thus there is no remanence or macroscopic irrever-
sibility.

In Fig. 5(a) are shown the effects of uniaxial anisotropy
on the hysteresis loops for a spin-glass of N =6’ spins.
Here the anisotropy constant was fixed at the value
D =0.4 and the loops are plotted for various Jo. The case
Jo=0 may be contrasted with the results shown by open
circles in Fig. 4. The introduction of uniaxial anisotropy
opens up the hysteresis loop, in the same way that it splits
the FC and ZFC magnetization as a function of tempera-
ture (see Sec. IV).

The effect of increasing J, is to make the loops more
rectangular. By Jy= 1.0, the spin-glass is ferromagnetical-
ly ordered. As noted above, the loop shown in Fig. 5(a)
for this case is characteristic of an Ising ferromagnet; in
general, the change in shape of the loops with increasing
J is similar to that found in paper L.
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FIG. 6. (a) Measured magnetic hysteresis curve for 8 at. %
CuMn for large field sweep (after Ref. 18). (b) Measured dis-
placed magnetic hysteresis loop in 1 at. % 4AgMn (after Ref. 18).
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as in CuMn. [See Fig. 6(a)].

When the same type of calculations are repeated in the
presence of DM anisotropy, similar results are obtained.
Hysteresis loops for this case are shown in Fig. 5(b) in a
10X 10X 10 spin-glass with anisotropy constant D'=0.5
and temperature 7 =0.2. The values of J, are 0.25, 0.50,
and 1.00. Only the last case has a nonzero spontaneous
magnetization. Comparing Figs. 5(a) and 5(b), it may be
seen that in the case of DM anisotropy the loops appear to
be narrower and less rectangular, particularly at large J,.
This last effect is not unexpected since anisotropy of the
DM type [D i S; ><§,~] will oppose the tendency for
cooperative spin reversal in magnetic hysteresis. Hence
the abrupt magnetization reversals seen in the uniaxial
case are not as readily obtained. A simultaneous treat-
ment of both uniaxial and DM anisotropy is somewhat
difficult, although feasible. To mimic a combined uniaxi-
al DM anisotropy which also includes J, effects, we have

added a uniaxial component to Tij in Eq. (2.3), called J3.
The resulting hysteresis curve for J5=0.5 and all other pa-
rameters the same as in Fig. 5(b) is shown in the inset of
Fig. 5(b). With the “uniaxial” as well as DM anisotropy
present, the loop is broadened and the magnetization re-
versals are sharper than shown in the main portion of the
figure.

It was noted in I that sharp magnetization reversals are
seen!” 18 in Mn-containing spin-glasses and in concentrat-
ed AuFe alloys.”> All our calculations based on the aniso-
tropic Heisenberg system (of which the Ising model is a
special case) suggest that these sharp reversals are only
present when J, is positive. Only under these cir-
cumstances do the spins flip cooperatively as H is
changed. It is clear that such a ferromagnetic tendency is
present in AuFe alloys. This was discussed in detail in pa-
per L

As discussed previously,’ there is experimental evidence
which suggests that Mn-containing alloys also have a fer-
romagnetic tendency. It is important to note that what
determines the sharpness of the hysteresis loop is not the
magnitude of J, alone; it also depends on how much and
what kind of anisotropy there is to compete with the
cooperative effects induced by the J, term. Thus a system
with a large degree of DM anisotropy [as, for example,
AuFe (Ref. 7)] may require a larger amount of J;, to show
sharp hysteresis loops. It may be speculated that since
CuMn is considerably less anisotropic,’ less of a ferromag-
netic tendency is needed to cause the abrupt magnetization
reversals seen in hysteresis loops.

The experimentally observed hysteresis loops for Mn-
containing alloys are illustrated in Fig. 6. Figure 6(a),
which shows the results of a symmetric field sweep, makes
it clear that in CuMn the loop is extremely narrow and the
field reversal quite dramatic. The closest we have come to
reproducing this type of behavior is to add a “uniaxial” Jj;
component to the Heisenberg Hamiltonian. The resulting
loop is shown in Fig. 7 for J§=0.5, T =0.2, and N =10°.

Of equal, if not greater, interest from an experimental
viewpoint, is the presence of the so-called “displaced
loops.”!”'® An example of one is shown in Fig. 6(b); al-
though the data'® is for A4gMn, the behavior is typical of
CuMn spin-glasses as well. These loops are seen when the
field sweep is very nonsymmetric or when the spin-glass is
field cooled and the loop is generated by reversing the
field at sufficiently small (negative) |H| values. A
“memory” effect leads to a displacement of the loop rela-
tive to the H =0 axis. To search for this behavior we con-
sidered nonsymmetric field sweeps, starting from large
positive H values and reversing at small (in magnitude)
negative H. For an Ising spin-glass, as pointed out in I,
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(a)

- /
Mo
0l o

2 03
H,
-0.1

-0.2+

(b)

FIG. 8. (a) Magnetic hysteresis loop with DM anisotropy con-
stant D'=0.5 for nonsymmetric field sweep with Jo=0. (b)
Magnetic hysteresis loop with DM anisotropy constant D'=0.5
for nonsymmetric field sweep with J;=0.75. This yields a
characteristic displaced loop to be compared with Fig. 6(b).

the loop so obtained is primarily shifted upward. When
Jo >0, the loop is sharp and the asymmetry is only with
respect to the M =0 axis. We have verified that in the
Heisenberg case with uniaxial anisotropy the same qualita-
tive behavior is observed as for Ising spins.

The introduction of DM anisotropy leads to different
behavior, however. In Fig. 8(a) is plotted a hysteresis loop
with DM anisotropy constant D’'=0.5, J,=0.5, and
T =0.2 in an 8° Heisenberg spin-glass.?® The loop is ob-
tained by starting at very large H and then reversing the
field at around —H =0.2. Only for the case of DM an-
isotropy have we found that M became positive (as H is
increased from negative values) before H changed sign to a
positive value. In the uniaxial case (which is very much
like Fig. 8 in paper I) M changes sign after H has become
positive. Only in the DM case is there a kind of “memory
effect” which directs the system toward positive magneti-
zation. This can be seen more clearly in Fig. 8(b) for
Jo=0.75, which is large enough to make the loop more
rectangular. Unfortunately, this value of J, is sufficient
to cause spontaneous ferromagnetism. Here all other pa-
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rameters are the same as in Fig. 8(a). For more rectangu-
lar hysteresis loops, the effect of DM anisotropy is to dis-
place the loop relative to the H =0 axis, in a way which is
similar to that observed experimentally. By comparing
Figs. 6(b) and 8(b) it may be seen that results for displaced
hysteresis loops are in reasonable qualitative agreement.

Fert and Levy’ have argued on the basis of analytical
arguments that a unidirectional anisotropy (such as DM)
will cause displaced loops. Essential to their derivation is
the assumption that the spins all rotate rigidly in response
to a rotation of an applied magnetic field. This assump-
tion of rigid rotation can be roughly justified within our
framework only when J, is sufficiently large. This will be
discussed in more detail in the following section. When
the spins do not rotate rigidly (i.e., for smaller J;), then
the nature of the “displaced loops” is still characteristical-
ly different from that obtained in the uniaxial anisotropy
case. Such nonrigid rotations lead to loops like that
shown in Fig. 8(a).

In summary, our numerical results demonstrate that
under the assumption of rigid spin rotation (which we find
will occur when a ferromagnetic tendency is present) the
effect of Dzyaloshinsky-Moriya ansiotropy is to yield the
so-called displaced hysteresis loops. While it is somewhat
disturbing that we need such large values of J, to obtain
rigid rotations in the DM model, it should be noted that
our numerical parameters cannot be quantitatively com-
pared with their experimental counterparts. This is due in
part to all the simplifications inherent in our model Ham-
iltonian, as well as to our (mean-field) approximate solu-
tion of this model applied to a finite system.

VI. EFFECTS OF FIELD ROTATIONS

An important assumption in recent theoretical work'®!!
on dynamical properties of spin-glasses is that under the
proper circumstances all the spins in the system rotate rig-
idly in response to a rotation of the external field. This is
believed to occur when the spin-glass is cooled in a suffi-
ciently large field so that the remanence is well established
and does not change in magnitude but only in direction.
Furthermore, it is supposed that the anisotropy is relative-
ly weak.

While our own calculations cannot make contact with
dynamical measurements (as in torque?’ or ESR experi-
ments'?), we can study the validity of the assumption that
the spins rotate rigidly.2>. We do this for both the isotro-
pic Heisenberg model and for the case of DM anisotropy.
In both cases the inclusion of a J, term is found to be im-
portant. Our parameters were not chosen to match the ex-
perimental configurations, but rather to probe in a qualita-
tive way the changes in the spin-glass states, as magnetic
fields are rotated. To test the hypothesis of rigid rotation
we chose the cooling field to be in the z direction. The
field was then rapidly rotated to be along the x axis. In
the case of the isotropic Heisenberg model, the final and
initial states are necessarily macroscopically equivalent;
one particular microscopic final state can be obtained by
rotating all of the original spins by 90° about the y axis.
The final state that we found, however, was not this spe-
cial rotated state. This is not surprising because we al-
lowed only one spin to change at a time in executing our
iterative scheme. The final spin-glass state was not ob-
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FIG. 9. (a) Distribution of calculated x component of

thermally averaged spins {m;}, divided by value (mf), obtained
if m; were to rotate rigidly in response to H rotation. The field
applied to isotropic Heisenberg system (with H values as indicat-
ed) is quickly rotated from % to £ direction. A rigid rotation of
all spins corresponds to a § function at 1.0. (b) Distribution of
the calculated x component of thermally averaged spins {m;} di-
vided by value obtained if mi; were to rotate rigidly in response
to H rotation [same configuration as in (a)].

tained by a 7 /2 rotation (about the y axis) of the initial
one, although it was macroscopically equivalent to such a
state. The difference arose because the spins also rotated
about the x axis by an arbitrary amount which presumably
depended on the order of sequencing of the iterations.
Consecutive single-spin-flip processes do not necessarily
find that path between the initial and final states in which
all spins rotate rigidly, although such a path does not in-
volve hopping over barriers. It is not clear what happens
in laboratory spin-glasses; it seems plausible that in these
highly disorganized systems coherent rotation of all the
spins will not generally occur, but rather that individual
spins will, in general, flip in an uncoordinated fashion.
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To quantify the degree of rigidity of spin rotation in
response to field changes, we plotted a histogram of the
ratio of the final m; at a given site to the value it would
have if it rotated in the same way as the total magnetiza-
tion. Figure 9(a) illustrates what happens for the isotropic
Heisenberg system. The horizontal axis plots the value of
m/* after rotation, divided by the quantity

[(mP)gsin6+ (m)cosd]=mpX .

Here 0 is taken to be the angle through which the total
magnetization rotates. This latter expression is the expect-
ed value of m/ if this spin rotated about the y axis by 6.
Here the subscript zero refers to the initial values of the
spin, before rotation of the field. As expected, we found
that for the Heisenberg case 6=m/2. The resulting histo-
gram is shown in Fig. 9(a) for two values of |H|=0.2
and 2.0. While it is peaked around the value 1.0, there is a
clear distribution in the histogram, so that all spins have
not rotated rigidly. As the field value is increased from
0.2 to 2.0, the distribution sharpens up. This effect is also
seen as J, is increased. Large fields or positive J, tend to
keep all the spins aligned so that they rotate rigidly.

The effect of J, is even more striking when DM aniso-
tropy is present. In Fig. 9(b) we have plotted the same his-
togram as in Fig. 9(a) with D'=0.25. Here the angle 6 is
less than /2 as expected, since the total magnetization
cannot rotate freely to follow the direction of the field.
The presence of microscopic anisotropy leads to an effec-
tive “anisotropy field”?° which acts to “resist” rotations of
the magnetization. In Fig. 9(b) it is clear that for J,=0
and fairly large D’, there is no peak in the distribution at
the value 1.0, as would be seen if the spins rotated rigidly.
As J, increases to 0.5 a small maximum is present. By
the time J,=1.0 (which is in the ferromagnetic limit) the
spins are clearly rotating rigidly as the field rotates and
the distribution is highly peaked. In summary, the as-
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sumption of rigid rotation of the spins seems to be justi-
fied under those same circumstances which lead to sharp
reversals in magnetic hysteresis. (That is, there must be a
tendency towards ferromagnetism.) As seen in Sec. V, our
results for magnetic hysteresis seem to be consistent with
analytical calculations’ for hysteresis behavior (which are
based on rigid-spin rotations). Whenever we also can jus-
tify the assumption of rigid-spin rotation, we see displaced
loops having the character of those predicted on the basis
of analytical arguments.

VII. FERROMAGNETIC SPIN-GLASSES

Gabay and Toulouse' (GT) have proposed that trans-
verse spin-glass and longitudinal ferromagnetic order can
coexist. In our calculations, we see clear evidence for this
coexistence when J, is reasonably large (Jo>0.5) and
when the uniaxial anisotropy and magnetic fields are suf-
ficiently small that they do not suppress Q, altogether.
The evidence regarding the experimental realization of the
GT state is not definitive. Mossbauer experiments on
AuFe (which probe short-range order) are cited as support
for coexistence.’® Finite-field magnetization data have
been interpreted as suggestive of “reentrant ferromagne-
tism”: There is a transition from long-range ferromagne-
tism (which may or may not be of the coexistent GT type)
to spin-glass order as the temperature is lowered.’! =3
Magnetic hysteresis data®® in these systems also show
unusual effects. It has been argued®’ that the reentrant
state does not correspond to long-range ferromagnetic or-
der when there is no applied field. Presumably, sufficient-
ly large applied fields will also destroy the low-
temperature spin-glass state. Therefore, a truly reentrant
state may only exist in a narrow range of fields H > 0.

Although we cannot address these experimental find-
ings directly, we can determine the theoretical behavior of
the FC and ZFC magnetizations for moderate J, and fin-
ite H, and the zero-field (Jy,7) phase diagram. The
temperature-dependent magnetizations are plotted in Fig.
10 for a coexistent ferromagnetic spin-glass in a field of
H =0.5. Both uniaxial and DM anisotropy are considered
and J,=0.6 in both cases; the top pair of curves corre-
sponds to the former and the bottom curve to the latter.
For the uniaxial case we believe the result shown by the
dashed line is a numerical artifact, deriving from the fact
that upon cooling (at constant field) the system remains in
a “supercooled” longitudinally ordered state, due to nu-
merical problems.*® This happens because the self-
consistent equations are always satisfied when m=m}
=0. Eventually, at sufficiently low 7, transverse order
appears discontinuously as shown in Fig. 10 at T ~0.8J.
If this cooled state is then heated up, Q, persists up to
higher temperatures (T, ~2.2); for a fixed 7, the warming
curve has the lower free energy. Furthermore, this same
(warming) curve is obtained by a ZFC procedure. While
we believe the bottom curve in the pair (for D =0.8) is the
physical result for the FC magnetization in the uniaxial
case, we have presented the “supercooled” curve to illus-
trate the difficulties that may be encountered in numerical
calculations. While it is highly unlikely, it is not impossi-
ble that a laboratory spin-glass with strong uniaxial aniso-
tropy may also exhibit these supercooling instabilities.

For the case of DM anisotropy, 7, and T, are virtual-
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ly identical, and we consequently had no numerical diffi-
culties with supercooling. The bottom curve in Fig. 10
shows that the FC and ZFC curves are indistinguishable
for this value of H. In general, because J acts to enhance
the field, the temperature-dependent magnetizations are
similar to those observed at high fields in “pure” spin-
glasses. Hence MZF€=M¥C, even for relatively low fields,
in the GT state. Because of finite-size effects we were un-
able to consider fields sufficiently small to see the split-
ting, if any, of the two history-dependent magnetizations.
Experimentally MFC and MZFC are observed to split in
sufficiently low fields. Our calculated hysteresis loops for
the GT state are rather boxlike, as in Fig. 5(a) for Jo=1.0.
We saw no particular effects that could qualitatively dis-
tinguish between these loops and those we found for a
disordered ferromagnet with no spin-glass order (Q, =0).

That we saw no decrease in the FC magnetization at
low T for any J, would appear to be inconsistent with ex-
periment. However, because the fields we applied were of
sizable magnitude, it may be that they suppressed the
low-T spin-glass state. To further test for reentrancy, we
studied the phase diagram at zero H in the (J,,T') plane.
The two T =0 intercepts corresponding to the spin-glass
to GT state and the GT to ferromagnetic state transition
can be reliably calculated using our mean-field tech-
nique.’’ Presumably the slope of the lines at finite but
small T can also be accurately determined. Our results for
a 20’ isotropic Heisenberg spin-glass gave no evidence for
reentrancy. That is, the slope of the spin-glass to GT state
transition was not found to be negative at low T.

We conclude that in zero and in moderate applied fields
the so-called reentrant state is not found in our calcula-
tions, although the GT state is clearly in evidence. We
cannot rule out the possibility that a reentrant transition
exists only in some narrow range of magnetic fields. Al-
ternatively, it may be that the reentrant phenomena ob-
served in laboratory spin-glasses may be due to imhomo-
geneity, time-dependent, or other effects which are not in-
cluded in our theoretical model.

VIII. CONCLUSIONS

One of the most striking conclusions presented in this
work is that an isotropic (short-range) Heisenberg spin-
glass has no macroscopic irreversibility. This is a conse-
quence of the ready accessibility, due to rotational symme-
try, of the field-cooled state. Once microscopic anisotropy
is introduced, most history-dependent properties are found
to be similar to those we presented for the Ising case in the
preceding paper.

The new effects in anisotropic Heisenberg spin-glasses
(not seen in the Ising case) are (i) the presence of displaced
loops (when the anisotropy corresponds to the
Dzyaloshinsky-Moriya mechanism) and (ii) the coex-
istence of (transverse) spin-glass and (longitudinal) fer-
romagnetic order. We have discussed both of these in
some detail. In order to obtain displaced loops which are
qualitatively similar to those observed in CuMn, we found
it necessary to introduce a positive J,. This ensures that
the spins rotate rigidly in response to a rotation of the
magnetic field. While the assumption of rigid rotation
seems to be necessary in order to make progress theoreti-
cally'®!! and to be justified experimentally,'*?’ it is not
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clear what is going on microscopically to maintain this ri-
gidity. One possible mechanism is a tendency toward
short-range ferromagnetic order. When this ferromagnet-
ic tendency is sufficiently strong, we find a Gabay-
Toulouse spin-glass ferromagnetic state is obtained from
our numerical calculations. However, for zero and
moderately high fields, we do not see any evidence for the
so-called reentrant behavior which is frequently observed
in the laboratory.’! ~3*

We have found that microscopic anisotropy is necessary
to obtain remanence, magnetic hysteresis, and other ir-
reversible processes. On the other hand, it seems clear ex-
perimentally'® that these properties are intrinsic to spin-
glasses and, for example, do not change appreciably'® as
further anisotropy is introduced through the addition of
magnetic impurities. Our point of view is not necessarily
inconsistent with these experimental findings. Anisotropy
must be present in order to inhibit the vector spin from
“following” a magnetic field. No spin-glass can be entire-
ly free from intrinsic anisotropy. The addition of impuri-
ties, which is an extrinsic effect, does not seem likely to
further enhance irreversibility, once it is reasonably well
established.

We have not discussed the concept of macroscopic an-
isotropy, in part because there is no unique definition of
this property. Our approach has focused entirely on mi-
croscopic anisotropy mechanisms. While ours is among
the first attempts to relate microscopic anisotropy to ir-
reversible processes, it is clear that further studies are
needed, in particular, to probe the barrier heights on the
free-energy surface. These should help to give useful in-
sights into possible differences between finite- and
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infinite-range Heisenberg systems and to provide a more
microscopic picture of dynamical effects. This latter is
extremely important in view of the fascinating spin reso-
nance'? and torque experiments’’ which have recently
been performed.

We conclude with some speculative remarks concerning
the differences observed in magnetic hysteresis and
dynamical properties in the two prototypical spin-glass al-
loys: AuFe and CuMn. Our explanation for the rigid ro-
tations found in Mn-containing alloys is based on the ex-
istence of ferromagnetic correlations. As discussed in I,
there is experimental evidence in support of these effects.
However, Fe-containing alloys presumably have even
greater ferromagnetic tendencies than those containing
Mn. The relatively weaker rigidity observed in AuFe, as
compared with CuMn, must then derive from the larger
DM anisotropy in the former case.>® We have shown how
this anisotropy destroys cooperative spin reversals in mag-
netic hysteresis, and in general weakens rigidity [see Figs.
5(b) and 9(b)]. We propose that the microscopic parame-
ter responsible for rigidity is the ratio Jo/D’, where D’ is
the amplitude of the Dzyaloshinsky-Moriya anisotropy
constant, and J, is the positive displacement of the
(Gaussian) distribution of exchange interactions.
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